نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناس‌ارشد، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 استادیار، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

3 دانش آموخته کارشناس‌ارشد، گروه مهندسی عمران، پژوهشکده مسکن و ساختمان، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران

چکیده

شمارش تعداد دانه‌های خاک در مطالعات دانه‌بندی، به‌ویژه در علوم زمین‌شناسی، کشاورزی و محیط‌زیست و مهندسی دارای اهمیت است. ازجمله آن می‌توان به تحلیل دقیق خصوصیات خاک، تعیین ساختار خاک و تحلیل محیط زیستی اشاره کرد. هدف اصلی این پژوهش، ارزیابی دانه‌بندی و تشخیص شکل ذرات خاک با استفاده از فن‌های پردازش تصویر است. در این پژوهش، ابتدا تصاویری به‌صورت رنگی از دانه‌بندی خاک تهیه شد. سپس این تصاویر به­وسیلۀ زبان برنامه‌نویسی Python و کتابخانه Scikit-Image پردازش شدند. درنهایت برای اعتبارسنجی مدل، از 17 عدد دانه برنج و 8 عدد سکه استفاده ‌شد. نتایج نشان داد که این روش با دقت بالا توانست تعداد و شکل آن‌ها را تشخیص دهد. همچنین در تشخیص تعداد و شکل ذرات خاک نیز به‌خوبی عمل کرد. به‌‌علاوه، در مقایسه با چندین نرم‌افزار دیگر در همین زمینه عملکرد بهتری را از خود ارائه کرد. با کمک این روش می‌توان منحنی دانه‌بندی خاک را رسم کرد. این رویکرد منجر به کاهش هزینه و زمان محاسبات می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Utilizing Image Processing Techniques for Soil Particle Sizing

نویسندگان [English]

  • Keihan Moradveisi 1
  • Mohsen Isari 2
  • Mehran Moradveisi 3

1 M.Sc. Alumnus, Department of Civil Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran

2 Assist. Professor, Department of Civil Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran

3 M.Sc. Alumnus, Department of Earthquake Engineering, Building and Housing Research Center, Road, Housing and Urban Development Research Center, Tehran, Iran

چکیده [English]

Counting the number of soil particles in grain size studies is of great importance, especially in geological, agricultural, environmental, and engineering sciences. It can be used for detailed analysis of soil properties, determining soil structure, and environmental analysis. The main goal of this research is to evaluate the grain size and shape recognition of soil particles using image processing techniques. In this study, initially, color images of soil grain size were acquired. Then, they were processed using Python programming language and the Scikit-Image library. Finally, for model validation, 17 rice grains and 8 coins were used. The results demonstrated that this method was able to accurately detect the number and shape of these particles. It also performed well in identifying the number and shape of soil particles. Furthermore, when compared to several other software tools in the same field, it provided better results. This approach can be utilized to plot the soil grain size curve, ultimately leading to reduced computational costs and time.

کلیدواژه‌ها [English]

  • Python
  • Image Processing
  • Soil Granulation
  • Shape of Soil Particles
ASTM. (2017). Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. In ASTM (Vol. 7928, pp. 1-25). DOI: 10.1520/D7928-21E01
Athanassiadis, A. G., Miskin, M. Z., Kaplan, P., Rodenberg, N., Lee, S. H., Merritt, J., Brown, E., Amend, J., Lipson, H., & Jaeger, H. M. (2014). Particle shape effects on the stress response of granular packings. Soft Matter10(1), 48-59. DOI: 10.1039/C3SM52047A
Aydin, M., & Kurnaz, T. F. (2023). An alternative method for the particle size distribution: Image processing. Turk. J. Eng., 7(2), 108-115. DOI: 10.31127/tuje.1053462
Panagiotis Antoniadis. (2023). How to Convert an RGB Image to a Grayscale. Available online at: https://www.baeldung.com, Accessed 19, June 2023.
Behringer, R. P., Howell, D., Kondic, L., Tennakoon, S., & Veje, C. (1999). Predictability and granular materials. Physica D: Nonlinear Phenomena, 133(1-4), 1-17. DOI: 10.1016/S0167-2789(99)00094-9
Coates, G. F., & Hulse, C. A. (1985). A comparison of four methods of size analysis of fine-grained sediments. New Zealand J. Geol. Geophys., 28(2), 369-380. DOI: 10.1080/00288306.1985.10422234
Damadipour, M., Nazarpour, M., & Alami, M. T. (2019). Evaluation of particle size distribution using an efficient approach based on image processing techniques. Iran. J. Sci. Technol. Trans. Civil Eng., 43, 429-441. DOI: 10.1007/s40996-018-0175-3
Dan, H. C., Bai, G. W., & Zhu, Z. H. (2021). Application of deep learning-based image recognition technology to asphalt–aggregate mixtures: Methodology. Construct. Build. Mater., 297, 123770. DOI: 10.1016/j.conbuildmat.2021.123770
El-Yamany, I., Wael, A., Adly, N., & Torki, M. (2023, June). STACKMAPS: A Visualization Technique for Diabetic Retinopathy Grading. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE. DOI: 10.1109/ICASSP49357.2023.10095667
Garcia, X., Akanji, L. T., Blunt, M. J., Matthai, S. K., & Latham, J. P. (2009). Numerical study of the effects of particle shape and polydispersity on permeability. Phys. Rev. E, 80(2), 021304. DOI: 10.1103/PhysRevE.80.021304
Goyal, M. (2011). Morphological image processing. IJCST, 2(4), 59. DOI: 10.1002/9781118093467.CH13.
Jana, B. R., Thotakura, H., Baliyan, A., Sankararao, M., Deshmukh, R. G., & Karanam, S. R. (2023). Pixel density based trimmed median filter for removal of noise from surface image. Appl. Nanosci., 13(2), 1017-1028. DOI: 10.1007/s13204-021-01950-0
Johndcook .(2009). Three algorithms for converting color to grayscale. Avalibale online at: https://www.johndcook.com, Accessed 24, August 2019.
Kalidhas, M., & Sivakumar, R. (2022). Image processing and Supervised Classification of LANDSAT data for Flood Impact Assessment on Land Use and Land Cover. In 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 437-440). IEEE. DOI: 10.1109/ICTACS56270.2022.9988164
Kim, D., Song, J., & Park, J. (2023). Quantifying Soil Particle Settlement Characteristics through Machine Vision Analysis Utilizing an RGB Camera. Agri., 13(9), 1674. DOI: 10.3390/agriculture13091674
Kumar, K., Mishra, R. K., & Nandan, D. (2020). Efficient hardware of RGB to Gray conversion realized on FPGA and ASIC. Procedia Comput. Sci., 171, 2008-2015. DOI: 10.1016/j.procs.2020.04.215
Liu, J., Cheng, D., Li, Y., Zhao, K., & Kou, Q. (2022). Quantitative evaluation of the influence of coal particle size distribution on gas diffusion coefficient by image processing method. Fuel, 314, 122946. DOI: 10.1016/j.fuel.2021.122946
Mora, C. F., Kwan, A. K. H., & Chan, H. C. (1998). Particle size distribution analysis of coarse aggregate using digital image processing. Cement  Concrete Res., 28(6), 921-932. DOI: 10.1016/S0008-8846(98)00043-X
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet., 9(1), 62-66. DOI: 0018-9472/79/0100-0062$00.75
Sagayaraj, A. S., Kabilesh, S. K., Mohanapriya, D., & Anandkumar, A. (2021). Determination of soil moisture content using image processing-a survey. 2021 6th International Conference on Inventive Computation Technologies (ICICT) (pp. 1101-1106). IEEE. DOI: 10.1109/ICICT50816.2021.9358736
Santos, R., & Fernandes, J. N. (2022). Estimation of river flow discharges using image processing. International Conference on Testing and Experimentation in Civil Engineering (pp. 363-374). Cham: Springer Nature Switzerland. DOI: 10.1007/978-3-031-29191-3_30
Shinohara, K., Oida, M., & Golman, B. (2000). Effect of particle shape on angle of internal friction by triaxial compression test. Powder Technol., 107(1-2), 131-136. DOI: 10.1016/S0032-5910(99)00179-5
Soille, P., Pesaresi, M., & Ouzounis, G. K. (2011). Mathematical morphology and its applications to image and signal processing. 10th International Symposium, ISMM 2011, Verbania-Intra, Italy, July 6-8, 2011, Proceedings. DOI: 10.1007/978-3-642-21569-8
Soille, P., & Soille, P. (2004). Opening and closing. Morphological image analysis: Principl. Appl., 105-137. DOI: 10.1007/978-3-662-05088-0_4
Soille, P., & Soille, P. (2004). Hit-or-miss and skeletons: In Morphological Image Analysis: Principl. Appl., 139-182. DOI: 10.1007/978-3-662-05088-0_5
Sun, Q., Zheng, J., Coop, M. R., & Altuhafi, F. N. (2019). Minimum image quality for reliable optical characterizations of soil particle shapes. Comput. Geotech., 114, 103110. DOI: 10.1016/j.compgeo.2019.103110
Sun, X. (2021). Design of the poster image system based on human vision. Sci. Program., 2021, 1-14. DOI: 10.1155/2021/1411145
Szeliski, R. (2022). Computer vision: algorithms and applications. Springer Nat. DOI: 10.1007/978-3-030-34372-9
Tuan, N. M., Kim, Y., Lee, J. Y., & Chin, S. (2022). Automatic stereo vision-based inspection system for particle shape analysis of coarse aggregates. J. Comput. Civil Eng.36(2), 04021034. DOI: 10.1061/(ASCE)CP.1943-5487.0001005
Waris, M. I., Mir, J., Plevris, V., & Ahmad, A. (2020). Predicting compressive strength of CRM samples using Image processing and ANN. In IOP Conference Series: Materials Science and Engineering (Vol. 899, No. 1, p. 012014). IOP Publishing. DOI: 10.1088/1757-899X/899/1/012014
Xu, Z., Zhang, X., Chen, L., Pei, K., & Xu, B. (2016). Python probabilistic type inference with natural language support. In Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering (pp. 607-618). DOI: 10.1145/2950290.2950343
Yang, J., & Luo, X. D. (2015). Exploring the relationship between critical state and particle shape for granular materials. J. Mechanic. Phys. Solid., 84, 196-213. DOI: 10.1016/j.jmps.2015.08.001
Yu, L., He, S., Liu, X., Jiang, S., & Xiang, S. (2022). Intelligent crack detection and quantification in the concrete bridge: A deep learning-assisted image processing approach. Adv. Civil Eng., 2022. DOI: 10.1155/2022/1813821