نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهیدچمران اهواز، اهواز، ایران

3 دانشیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

عنصر روی یکی از عناصر سنگین مهمی است که در آلودگی خاک نقش دارد. کانی­های رسی از جاذب­های کم­هزینه هستند که توانایی جذب فلزات سنگین را دارند. بنابراین هدف این مطالعه بررسی توانایی کانی­های کائولینیت و سپیولیت با خاستگاه ایرانی در pH و اندازه مختلف بر حذف روی بود. سینتیک جذب روی از محلول­های آبی توسط سپیولیت و کائولینیت در اندازه ذرات: 25< و µm 25-53، زمان تماس: min 5-2880 و pH: 5، 7 و 9، در دمای ℃ 25 بررسی شد. سپس رفتار جذبی روی به­وسیله کانی‌های سپیولیت و کائولینیت با مدل‌های سینتیکی شبه مرتبه اول، شبه مرتبه دوم، ایلوویچ و پخشیدگی درون ذره­ای مورد ارزیابی قرار گرفت. بر اساس نتایج به‌دست‌آمده از برازش مدل‌های سینتیکی با داده‌های تجربی، مدل شبه مرتبه دوم (99/0= (R2به­عنوان بهترین مدل انتخاب شد. نتایج نشان داد که با افزایش زمان تماس، میزان جذب روی توسط هر دو کانی افزایش یافت. راندمان جذب روی با افزایش pH افزایش یافت و بیشترین درصد حذف در 9=pH مشاهده شد. همچنین، کاهش اندازه ذرات به کوچکتر از µm 25 سبب افزایش ظرفیت جذب روی گردید. بطور کلی میزان ظرفیت جذب روی در هر دو اندازه مورد بررسی برای کانی سپیولیت بیش­تر از کائولینیت بود. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of pH and Adsorbent Particle Size on Kinetics of Zn Removal from Aqueous Solutions Using Sepiolite and Kaolinite

نویسندگان [English]

  • Zahra Albozahar 1
  • Neda Moradi 2
  • Saeid Hojati 3

1 M.Sc. Alumnus, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Assist. Professor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Assoc. Professor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Zinc (Zn) is one of the important heavy metals that play a role in soil pollution. Clay minerals are low-cost adsorbents that can adsorb heavy metals. Therefore, this study aimed to investigate the ability of Iranian kaolinite and sepiolite to remove Zn at different pH and particle sizes. The absorption kinetics of zinc from aqueous solutions by sepiolite and kaolinite were investigated in particle sizes:

کلیدواژه‌ها [English]

  • Kaolinite
  • Kinetic Models
  • Particle Size
  • Sepiolite
  • Zinc
Ali, A., Siddique, M., Chen, W., Han, Z., Khan, R., Bilal, M., Waheed, U., & Shahzadi, I. (2022). Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. Int. J. Environ. Res. Public Health., 19, 6396. DOI: 10.3390/ijerph19116396
Alvani, S., Hojati, S., & Landi, A. (2019). Kinetics and isotherms of competitive adsorption of lead and copper using micro- and nanoparticles of palygorskite. J. Agric. Eng., 41(4), 49-65. [In Persian]. DOI:10.22055/AGEN.2019.25101.1414
Bektas, N., Agim, B. A., & Kara, S. (2004). Kinetic and equilibrium studies removing lead ions from aqueous solutions by natural Sepiolite. J. Hazard. Mater., 112(1-2), 115-122. DOI:10.1016/j.jhazmat.2004.04.015
Chapman, H. D. (1965). Cation Exchange Capacity. In: Black, C.A., Ed., Methods of Soil Analysis, American Society of Agronomy, Madison, 891-901.
Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z., & Wu, J. (2023). The application of mineral kaolinite for environment decontamination: A review. Catalyst., 13, 123. DOI:10.3390/ catal13010123
Dey, M., Akter, A., Islam, S. Dey, S. C., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water. Bangladesh. Heliyon, 7(12), e08625. DOI: 10.1016/j.heliyon.2021.e08625
Eloussaief, M., & Benzina, M. (2010). Efficiency of natural and acid-activated clays in the removal of Pb (II) from aqueous solutions. J. Hazard. Mater., 178, 753-757. DOI:10.1016/j.jhazmat.2010.02.004
Farsi, A., Aghasi, M., Esmaeili, A., & Eslami, H. (2020). Efficient removal of Cu(II) and Zn(II) from aqueous solution and real acid mine drainage by natural vermiculite and kaolinite. Desalin. Water Treat., 204, 224–237. DOI:10.5004/dwt.2020.26274
Feng, X. F., Long, R. X., Wang, L. L., Liu, C. C.; Bai, Z. X., & Liu, X. B. (2022). A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep. Purif. Technol., 284, 120099. DOI:10.1016/j.seppur.2021.120099
Forghani, M., Azizi, A., Livani, M. J., & Kafshgari, L. A. (2020). Adsorption of lead (II) and chromium (VI) from aqueous environment onto metal-organic framework MIL-100(Fe): Synthesis, kinetics, equilibrium and thermodynamics. J. Solid State Chem., 291, 121636. DOI:10.1016/j.jssc.2020.121636
Hamzenejad Taghlidabad, R., Sepehr, E., Khodaverdiloo, H., Samadi, A., & Rasouli-Sadaghiani, M. H. (2020).  Characterization of cadmium adsorption on two cost-effective biochars for water treatment. Arab. J. Geosci., 13, 448. DOI:10.1007/s12517-020-05477-6
Hojati, S., & Khademi, H. (2014). Physicochemical and Mineralogical Characteristics of Sepiolite Deposits of Northeastern Iran. Sci. Quart. J. Geosci., 23(90), 165-174. [In Persian]. DOI: 10.22071/gsj.2014.43982
Hojati, S., & A. Landi. (2015). Removal of zinc from a metal plating wastewater using an Iranian sepiolite: Determination of optimum conditions. Desalin, Water Treat., 53(8), 2117-2124. DOI:10.1080/19443994.2013.861771
Hojati, S., & Landi, A. (2014). Kinetic and thermodynamic studies of zinc removal from a metal-plating wastewater using Firouzkouh zeolite. J. Environ. Sci. Stud., 40(4), 901-912. DOI:10.22059/jes.2014.53006 [In Persian].
Hossain, M. A., Ngo, H. H., Guo, W. S., & Setiadi, T. (2012). Adsorption and desorption of copper (II) ions onto garden grass. Bioresour Technol., 121, 386–395. DOI:10.1016/j.biortech.2012.06.119
Kubilay, S., Gürkan, R., Savran, A., & Sahan, T. (2007). Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13, 41-51. DOI:10.1007/s10450-007-9003-y
Lawal, J. A., Odebunmi, E. O., & Adekola, F. A. (2020). Adsorption of Fe2+, Pb2+, Zn2+ and Cr6+ ions from aqueous solutions using natural, ammonium oxalate and sodium hydroxide modified kaolinite clay. Ife J. Sci., 22(3), 1-23. DOI:10.4314/ijs.v22i3.1
Lazarević, S., Janković-Častvan, L., Jovanović, D., Milonjić, S., Janaćković, D., & Petrović, R. (2007). Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolite. Appl. Clay Sci., 3, 47. DOI:10.1016/j.clay.2006.11.008
Lei, T., Li, S. J., Jiang, F., Ren, Z. X., Wang, L. L., Yang, X. J., Tang, L. H., & Wang, S. X. (2019). Adsorption of cadmium ions from an aqueous solution on a highly stable dopamine-modified magnetic nano-adsorbent. Nanoscale Res. Lett., 14, 352. DOI:10.1186/s11671-019-3154-0
Olaofe, O., Olagboye, S. A. Akanji, P. S. Adamolugbe, E. Y., Fowowe, O. T., & Olaniyi, A. A. (2015). Kinetic studies of adsorption of heavy metals on clays. Int. J. Chem. Sci., 7(1), 48- 54. DOI:10.5539/ijc.v7n1p48
Olowu, R. A., Osundiya, M. O., Oyewole, T. S., Onwordi, C. T., Yussuf, O. K., Osifeko, O. O., & Tovide, O. O. (2022). Equilibrium and kinetic studies for the removal of Zn(II) and Cr(VI) Ions from aqueous solution using pineapple peels as an adsorbent. Eur. J. Appl. Sci., 10(5), 34–47. DOI:10.14738/aivp.105.13051         
Pinto, P. X., Al-Abed, S. R., & Reisman, D. J. (2011). Biosorption of heavy metals from mining influenced water onto chitin products. Chem. Eng. J., 162, 1002-1100. DOI:10.1016/j.cej.2010.11.091
Rouhaninezhad, A. A., Hojati, S., & Masir, M. N. (2020). Adsorption of Cr(VI) onto micro- and nanoparticles of palygorskite in aqueous solutions: effects of pH and humic acid. Ecotoxicol. Environ. Saf., 206, 111247. DOI:10.1016/j.ecoenv.2020.111247
Ruiz-Hitzky, E., Aranda, P., Alvarez, A., Santaren, J., & Esteban-Cubillo, A. (2011). Advanced materials and new applications of sepiolite and palygorskite. Dev. Clay Sci., 3, 393-452. DOI:10.1016/B978-0-444-53607-5.00017-7
Sarma, G. K., Gupta, S. S., & Bhattacharyya, K. G. (2016). Adsorption of Crystal violet on raw acid treated montmorillonite, K10, in aqueous suspension. J. Environ. Manage., 171, 1-10. DOI:10.1016/j.jenvman.2016.01.038
Sharifipour, F., Hojati, S., Landi, A., & Faz Cano, A. (2015). Removal of lead from aqueous solutions using Iranian natural sepiolite: effects of contact time, temperature, pH, dose and heat-pretreatments. Irrigation Sci. Eng., 38(1), 135-147. [In Persian]. DOI:10.22055/jise.2015.11159
Sharma, Y. C. (2008).  Thermodynamics of removal of cadmium by adsorption on an indigenous clay.  J. Chem. Eng., 145, 64-68. DOI:10.1016/j.cej.2008.03.006
Shirvani, M., Shariatmadari, H., Kalbsi, M., Nourbakhsh, F., & Najafi, B. (2006). Sorption of cadmium on palygorskite, sepiolite and calcite: equilibria and organic ligand affected kinetics. Coll Surf: Physicochem Eng. Asp., 287, 182–190. DOI:10.1016/j.colsurfa.2006.03.052
Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng., 9, 105688. DOI:10.1016/j.jece.2021.105688
Sparks, D. L. (2003). Environmental Soil Chemistry. Academic Press, San Diego, California.
Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals   contaminated soils using EDTA. Environ. Pollut., 113, 111-120. DOI:10.1016/S0269-7491(00)00176-7
Sun, Y. B., Clemens, S. C., An, Z. S., & Yu, Z.W. (2006). Anstronomical timescale and palaeoclimatic implication of stacked 3.6-Myrmonsoon records from the Chinese Loess Plateau. Quat. Sci. Rev., 25, 33–48. DOI:10.1016/j.quascirev.2005.07.005
Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng., 308, 438–462. DOI:10.1016/j.cej.2016.09.029
Xu, L, Xing, X., & Peng, J. (2022). Removal of Zn2+ from Aqueous Solution Using Biomass Ash and Its Modified Product as Biosorbent. Int. J. Environ. Res. Public Health., 19(15), 9006. DOI:10.3390/ijerph19159006
Yuzer, H., M., Sabah, E., & Sabri, C. M. (2008). Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. J. Hazard. Mater., 15, 33-37. DOI:10.1016/j.jhazmat.2007.05.052