نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران

2 دانش آموخته کارشناسی ارشد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران

3 استادیار، گروه مهندسی عمران، دانشکده عمران و معماری، دانشگاه ملایر، ملایر، ایران

چکیده

سولفات یک آنیون مهم در آب‌های طبیعی است که غلظت بیش از حد آن مضر می­باشد. لذا در این پژوهش کارایی حذف یون سولفات به‌وسیله نانورس مونت ‌موریلونایت (جاذب) از آب با تعیین اثر غلظت نانو رس مونت موریلونایت،pH ، زمان و دما برای تعیین شرایط بهینه و سپس ایزوترم‌های جذب سولفات بررسی شد. بیش‌ترین میزان حذف سولفات در غلظت g/l 1 نانورس مونت‌ موریلونایت برابر  mg/g 74/4 یا 7/23% ، pH 3 برابر  mg/g 78/2 یا 8/27% ، زمان  min 90 برابر mg/g  15/2 یا 5/21% ، دمای °C 25 برابر mg/g 54/3 یا 4/35% به دست آمد. ثابت‌های ترمودینامیکی نشان دادند ماهیت جذب سولفات بر روی سطوح جاذب گرمازا و خودبه‌خودی است. معادله سینتیکی شیه مرتبه دوم نیز بر داده­های زمان برازش بهتری داشت که نشان دهنده جذب  شیمیایی سولفات بود. در بین معادلات ایزوترمی معادله لانگ‌مویر در مقایسه با فروندلیچ بر داده‌ها برازش بهتری پیدا کرد که نشان‌دهنده سطوح جذبی یک‌لایه است. همچنین ظرفیت جذب نانو رس مونت‌ موریلونایت  mg/g برای گوگرد (SO4˭-S)، mg/g 7/9  به دست آمد. تجزیه دستگاهی SEM-EDX نیز جذب سطحی گوگرد و تغییرات سطح را نشان داد. بنابراین این نانو رس در حذف سولفات از آب‌ مؤثر بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Sulfate Adsorption from Polluted Water Using Montmorillonite Nanoclay

نویسندگان [English]

  • ُShahriar Mahdavi 1
  • Behnaz Taherinia 2
  • Amir Hossein Sayyah zadeh 3

1 Assoc. Professor, Department of Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran

2 M.Sc. Alumnus,, Department of Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran

3 Assist. Professor, Department of Civil Engineering, Faculty of Civil and Architecture, Malayer University, Malayer, Iran

چکیده [English]

Sulfate is an important anion in natural waters, and its excessive concentration can be harmful. Therefore, in this study, the efficiency of sulfate removal using nanoclay montmorillonite (adsorbent) from water was investigated by determining the effect of adsorbent concentration, pH, time, and temperature to determine the optimal conditions. The sulfate adsorption isotherms were also examined. The highest sulfate removal was achieved at a concentration of 1 g/l of nanoclay montmorillonite, resulting in 4.47 mg/g or 23% removal, at pH 3 with 2.87 mg/g or 27% removal, at a time of 90 minutes with 2.15 mg/g or 21% removal, and at a temperature of 25°C with 3.54 mg/g or 35% removal. Thermodynamic constants indicated that sulfate adsorption on the adsorbent surfaces is endothermic and spontaneous. The pseudo-second-order kinetic model provided a better fit to the time data, indicating chemical adsorption of sulfate. Among the isotherm equations, the Langmuir equation showed a better fit compared to Freundlich, indicating monolayer adsorption surfaces. Furthermore, the maximum adsorption capacity of nanoclay montmorillonite for sulfate (SO4˭-S) was found to be 9.7 mg/g. SEM-EDX analysis also revealed surface adsorption of sulfur and changes in the surface. Therefore, this nanoclay was effective in removing sulfate from water.

کلیدواژه‌ها [English]

  • Kinetics
  • Pollution
  • Sulfate
  • Thermodynamics
Atigh, Z. B., Sardari, P., Moghiseh, E., Lajayer, B. A., & Hursthouse, A. S. (2021). Purified montmorillonite as a nano-adsorbent of potentially toxic elements from environment: An overview. Nanotechnol. Environ, Eng., 6(12). DOI: 10.1007/s41204-021-00106-3
Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study. Chem. Eng. J., 136(1). 1-13. DOI:  10.1016/j.cej.2007.03.005
Demiral, H., & Gunduzoglu, G. (2010). Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. Eng., 6(101). 1675-1680. DOI: 10.1016/j.biortech.2009.09.087
Fernando, W. A. M., Ilankoon, I., Syed, T. H., & Yellishetty, M. (2018). Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Mineral. Eng., 117. 74-90. DOI: 10.1016/j.mineng.2017.12.004
Gogoi, H., Leiviska, T., Ramo, J., & Tanskanen, J. (2019). Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water. Environ. Res., 175. 323-334. DOI: 10.1016/j.envres.2019.05.022.
Gupta, V., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J., 180, 81-90. DOI: 10.1016/j.cej.2011.11.006
Hong, S., Cannon, F. S., Hou, P., Byrne, T., & Nieto-Delgado, C. (2014). Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon. Carbon. Eng., 73(1), 51-60. DOI: 10.1016/j.carbon.2014.02.036 .
Hong, S., Cannon, F. S., Hou, P., Byrne, T., & Nieto-Delgado, C. (2017). Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source. Chemosphere. 184. 429-437. DOI: 10.1016/j.chemosphere.2017.06.019 .
Iakovleva, E., Makila, E., Salonen, J., Sitarz, M., & Sillanpaa, M. (2015). Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water. Chem. Eng. J., 559. 364-371. DOI: 10.1016/j.cej.2014.07.091 .
Jones Jr, B. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, New York. 384pp. DOI: 10.1201/9781420025293 .
Li, H., Chal, L., Cui, J., Zhang, F., Wang, F. & Li, S. (2022). Polypyrrole-modified mushroom residue activated carbon for sulfate and nitrate removal from water: adsorption performance and mechanism. J. Water Process Eng., 49.102916. DOI: 10.2139/ssrn.4011839 .
Ma, H., Wang, M., Zhang, J., & Sun, S. (2019). Preparation mechanism of spherical amorphous ZrO(OH)2/AlOOH hybrid composite beads for adsorption removal of sulfate radical from water. Mater. Lett., 247. 56-59.DOI: 10.1016/j.matlet.2019.03.033 .
Mahdavi, S., Molodi, P., & Zarabi, M. (2018). Utilization of bare MgO, CeO2, and ZnO nanoparticles for nitrate removal from aqueous solution. Environ. Prog. Sustain. Energy. Eng., 37(6), 1908-1917.‏ DOI: 10.1002/ep.12865
Mahdavi, Sh. (2016). Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water. Clean Technol. Environ. Policy. 18. 81-94. DOI: 10.1007/s10098-015-0993-y .
Mahdavi, Sh., Amini, N., Merrikhpour, H., & Akhzari, D. (2017). Characterization of bare and modified nano-zirconium oxide (ZrO2) and their applications as adsorbents for the removal of bivalent heavy metals. Korean J. Chem. Eng., 34. 234-244. DOI: 10.1007/s11814-016-0259-3 .
Moreroa-Monyelo, M., Falayi, T., Ntuli, F. & Magwa, N. (2022). Studies towards the adsorption of sulphate ions from acid mine drainage by modified attapulgite clays. South African J. Chem. Eng., 42. 241-254. DOI: 10.1016/j.sajce.2022.08.011 .
Muqeet, M., Malik, H., Mahar, R. B., Ahmed, F., Khatri, Z. & Carlson, K. (2017). Cationization of Cellulose Nanofibers for the Removal of Sulfate Ions from Aqueous Solutions. Indust. Eng. Chem. Res., 56. 14078-14088. DOI:  10.1021/acs.iecr.7b03739 
Nagappa, B., & Chandrappa, G. (2007). Mesoporous nanocrystalline magnesium oxide for environmental remediation. Micropor. Mesopor. Mater., 106(1-3), 212-218. DOI: 10.1016/j.micromeso.2007.02.052 .
Naghizadeh, A., Ghasemi, F., Derakhshani, E., & Shahabi, H. (2017). Thermodynamic, kinetic and isotherm studies of sulfate removal from aqueous solutions by graphene and graphite nanoparticles. Desal. Water Treat., 80. 247-254.‏ DOI: 10.5004/dwt.2017.20891
Namasivayam, C., & Sangeetha, D. (2008). Application of coconut coir pith for the removal of sulfate and other anions from water. Desal., 219(1-3), 1-13. DOI: 10.1016/j.desal.2007.03.008 .
Ntuli, F., Falayi, T., & Thwanane, U. (2016). Removal of sulphates from acid mine drainage using desilicated fly ash slag. WIT Transact. Ecol. Environ., 202.  383-390. DOI: 10.2495/WM160341
Oueslati, W., Rhaiem, H. B. & Amara, A. B. H. (2011). XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations. Desal., 271(1-3), 139-149. DOI: 10.1016/j.desal.2010.12.018 .
Rahman, M. T., Kameda, T., Miura, T., Kumagai, S. & Yoshioka, T. (2021). Removal of sulfate from wastewater via synthetic Mg-Al layered double hydroxide: An adsorption, kinetics, and thermodynamic study. J. Indian Chem. Soc. Eng., 98(4). 100185. DOI: 10.1016/j.jics.2021.100185 .
Rahmati, M., Yeganeh, G., & Esmaeili, H. (2019). Sulfate ion removal from water using activated carbon powder prepared by Ziziphus Spina-Christi Lotus Leaf. Acta Chim. Slovenica. Eng., 66(4), 888-898. DOI: 10.17344/acsi.2019.5093.
Saka, E., & Guler, C. (2006). The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite. Clay Mineral. Eng., 41(4), 853-861. DOI: 10.1180/0009855064140224.
Salimi, A. H., Mousavi, S. F., & Farzin, S. (2019). Removal of sulfate from Gamasiab river water samples by using natural nano-Clinoptilolite. J. Appl. Res. Water Wastewater. Eng., 6(1), 39-44.‏ DOI: 10.22126/arww.2019.1133
Shahzadi, T., Anwaar, A., Riaz, T., & Zaib, M. (2022). Sulfate and phosphate ions removal using novel nano-adsorbents: modeling and optimization, kinetics, isotherm and thermodynamic studies. Int. J. Phytoremed. Eng., 24(14), 1518-1532. DOI:‏ 10.1080/15226514.2022.2040421
Tan, K. H. (2005). Soil sampling, preparation, and analysis. CRC press. 27pp. DOI: https://doi.org/10.1201/9781482274769
Tan, K. H. (2010). Principles of Soil Chemistry. CRC Press. 392pp. DOI: 10.1201/9781439894606
Tombacz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci., 27(1-2), 75-94. DOI: 10.1016/j.clay.2004.01.001.
Wu, C. H., Kuo, C. Y., Lin, C. F., & Lo, S. L. (2002). Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm. Chemosphere, 47(3), 283-292. DOI: 10.1016/s0045-6535(01)00217-x