نوع مقاله : مطالعه موردی

نویسندگان

1 دانشجوی دکتری، گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، ایران

2 استاد، گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، ایران

3 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

آشکارسازی سهم هر یک از عوامل اقلیمی و انسانی می­تواند به مدیریت منابع آبی کمک کند. در این پژوهش ابتدا با استفاده از روش­های آماری وضعیت روند پارامترهای مؤثر بر منابع آب زیرزمینی دشت ماهیدشت طی دوره 1981 تا 2019 تعیین و سپس با استفاده از آزمون پتیت نقطه تغییر بارش، رواناب و سطح آب زیرزمینی محاسبه شد. مدل GMS به عنوان ابزاری برای شبیه­سازی آبخوان واسنجی شد. پس از تعیین نقطه نغییر، شبیه­سازی سطح آب زیرزمینی قبل و بعد از نقطه تغییر با استفاده از  مدل GMS انجام شد. با حذف اثر عوامل انسانی در مدل سهم اثرات تغییرپذیری اقلیمی و فعالیت­های انسانی بر آب‌های زیرزمینی به­دست آمد. نتایج نشان داد روند معنی­داری در تغییر بارش سالانه وجود ندارد، اما تغییرات رواناب سالانه دارای روند کاهشی و در سطح اعتماد 99% معنی‌دار و روند تراز سطح آب زیرزمینی نیز به‌صورت کاهشی و در سطح اعتماد 99% معنی‌دار شده است. آزمون نقطه تغییر پتیت نشان داد بارش بدون نقطه تغییر، اما رواناب در سال 1998 و تراز آب زیرزمینی در سال 2001 دارای نقطه تغییر است. همچنین مدل­سازی آبخوان نشان داد سهم فعالیت­های انسانی در کاهش تراز آب زیرزمینی آبخوان ماهیدشت به‌صورت متوسط 78 و تغییرپذیری اقلیمی 22% بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessing Contribution of Human Activities and Climate Variability on Groundwater Changes (Case Study: Mahidasht Aquifer, Kermanshah Province, Iran)

نویسندگان [English]

  • Ali Fatahi Chaghabagi 1
  • Ali Mohammad Akhund Ali 2
  • Arash Azari 3

1 Ph.D. Scholar, Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Professor, Department of Hydrology and Water Resources, Faculty of Water & Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Assoc. Professor, Department of Water Engineering, Faculty of Agriculture, Razi University, Kermanshah, Iran

چکیده [English]

Revealing the contribution of each of the climatic and human factors can help the management of water resources. Firstly, trend analysis and change‐point tests were performed to determine the status of the parameters affecting the groundwater resources of the Mahidasht aquifer during the period from 1981 to 2019 by using statistical methods and the Pettitt test. The GMS model was calibrated as a tool to simulate the Mahidasht aquifer system. After determining the change point, modeling of the groundwater level before and after the change point was done using the GMS model. By removing the effect of human factors in the model, the contribution of the effects of climate variability and human activities on groundwater was obtained. The results showed that there was no significant trend in annual rainfall, but the annual runoff has a significantly decreasing trend at the confidence level of 99%, and the trend of the groundwater level is also significantly decreasing at the confidence level of 99%. Pettitt change point test showed precipitation without a change point, but the runoff in 1998 and the groundwater level in 2001 had a change point. Finally, the modeling of the aquifer showed that the contribution of human activities in the reduction of the groundwater level of the Mahidasht aquifer was 78 and climate variability is 22%.

کلیدواژه‌ها [English]

  • Aquifer
  • Change Point
  • Conceptual Model
  • Mann-Kendall test
Ahmadi, H. (2018). Detection and attribution of climate change and separating the impacts of climate change and human activities in the Karkheh river catchment area under uncertainty. Master Dissertation, University of Tarbiat Modares, Tehran, Iran. 148 pp. [In Persian].
Ahmadi, H., & Delavar, M. (2019). Comparison of different approaches to separating human and climatic impacts on run-off changes in basins. Iran. J. Ecohydrol., 6(4), 943-955. DOI: 10.22059/ije.2019.283700.1139 [In Persian].
Anonymous (2013). Water balance studies of the Karkheh, Mahidasht study area in the year 2010-2011. Water balance report. Iran Water Resources Management Company. Accessed on 22.02.2022. available at: https://www.wrm.ir/ [In Persian].
Boyce, S. E., Nishikawa, T., & Yeh, W. W. (2015). Reduced order modeling of the Newton formulation of MODFLOW to solve unconfined groundwater flow. Adv. Water Resour., 83, 250-262. DOI: 10.1016/j.advwatres.2015.06.005
Chen, H., Wu, M., Duan, Z., Zha, Y., Wang, S., Yang, L., Zou, L., Zheng, M., Chen, P., Cao, W., & Zhang, W. (2023). Forecasting the human and climate impacts on groundwater resources in the irrigated agricultural region of North China Plain. Hydrol. Processes., 37(3). e14853. DOI: 10.1002/hyp.14853
Cuadrado-Quesada, G., & Rayfuse, R. (2019). Towards Sustainability in Groundwater Use: An Exploration of Key Drivers Motivating the Adoption and Implementation of Policy and Regulation.         Environ. Law., 32(1). 111–137. DOI: 10.1093/jel/eqz020
Dai. A. G. (2011). Drought under global warming: A review. WIRES Clim Change, 2(1), 45–65. DOI: 10.1002/wcc.81
Dehghani. N., Wafakhah. M. & Behermand, Abdolreza. (2015). Precipitation-runoff modeling using artificial neural network and fuzzy-adaptive neural network in Kesilian watershed. Watershed. Manag. J., 7(13), 128-137. DOI: 10.18869/acadpub.jwmr.7.13.137. [In Persian].
Ghamarnia .Gh., Enayati. S., & Amini. A. (2022) Numerical Simulation of Bijar-Divandere Plain Aquifer Using MODFLOW Code and Investigation in the Effects of Drought on Its Quantitative Changes. Environ. Water Eng., 8(1).15-30. DOI:  10.22034/jewe.2021.285092.1562 [In Persian].
Heim. R. R. (2002). A review of twentieth century drought indices used in the United States. Bull. Am. Meteorol. Soc,.. 83(8). 1149–1165. DOI: 10.1175/1520‐0477‐83.8.1149
Jabalbarezi. B., Zehtabian. Gh., Tavili. A., & Khosravi. H. (2020). Ation of Changes in Groundwater Level of Jafaria Plain Using GMS Software and MODFLOW Code. Iran. J. Watershed. Manag. Sci. and Eng., 14(50). 51-58. [In Persian].
Jiang. S., Wang. M., Ren. L., Xu. C., Yuan. F., Liu. Y., & Shen. H (2019). A framework for quantifying the impacts of climate change and human activities on hydrological drought in a semiarid basin of Northern China. Hydrol. Process., 33. 1075–1088. DOI: 10.1002/hyp.13386
Khalaj, M., Kholghi, M., Saghafian, B., & Bazrafshan, J. (2019). Investigation about climate change and human activity effects on groundwater level and groundwater quality in semiarid region, Iran- Water Resour. Res., 15(2), 278-290. DOI:  20.1001.1.17352347.1398.15.2.21.0 [In Persian].
Mohammadi, A. & Ghaeini-Hessaroeyeh. M. (2021). Groundwater Modeling of Astaneh-Kuchesfehan Aquifer. Irrig. Sci. and Eng., 44(3). 29-44. DOI: 10.22055/jise.2020.22058.1582 [In Persian].
Mohan, S. & Kuipally, N. (2021). Groundwater and Conjunctive Use Management. Springer, Cham. DOI: 10.1007/978-3-030-60147-8_23
Nakhaei, M., Hasani, A., Moghimi, H., & Abbasnovinpour, E. (2022). Predicting the effects of overuse on Zarandieh plain aquifer (Markazi province, Iran) using GMS software. Hydrogeol., 6(2), pp. 13-29. DOI: 10.22034/hydro.2022.13017 [In Persian].
 Niemann. JD. & Eltahir. E. (2005). Sensitivity of regional hydrology to climate changes. with application to the Illinois river basin. Water Resour. Res., 41(7). DOI: 10.1029/2004WR003893
Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. J. R. Stat. Soc.,28(2), 126–135. DOI: 10.2307/2346729
Poonia. V. & Tiwari. Hari.Lal. (2020). Rainfall-runoff modeling for the Hoshangabad Basin of Narmada River using artificial neural network. Arab. J. Geosci., 13(944). DOI: 10.1007/s12517-020-05930-6
Qu. X., Alvarez. P. J. J., & Li. Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Res. 47 (12). 3931–3946. DOI: 10.1016/j. watres.2012.09.058.
Rivera. J. A., Araneo. D. C., Penalba. O. C., & Villalba, R. (2018). Regional aspects of stream flow droughts in the Andean rivers of Patagonia. Argentina. Links with large‐scale climatic oscillations. Hydrol. Res., 49(1). 134–149. DOI: 10.2166/nh.2017.207
Sheikha BagemGhaleh. S., Babazadeh. H., Rezaei. H., & Sarai Tabrizi. M. (2023). Numerical modeling and trend analysis of Mahabad aquifer quantitative status. Water Soil. Manage. Model., 3(2). 1-17. DOI: 10.22098/mmws.2022.11275.1113 [In Persian]
Siebert. S., Burke. J., Faures. J. M., Frenken. K., Hoogeveen. J., Döll. P., & Portmann. F. T. (2010). Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci., 14. 1863–1880. DOI: 10.5194/hess-14-1863-2010
Wada. Y., van Beek. L. P. H., van Kempen. C. M., Reckman. J. W. T. M., Vasak. S., & Bierkens, M. F. P. (2010). Global depletion of groundwater resources. Geophys. Res. Lett. 37 (20). DOI: 10.1029/2010GL044571
Wreikat, M & Kharabsheh, A. (2020). Impact of over-pumping on groundwater resources sustainability at Amman Zarqa basin, Jordan: a case study of arid areas affected by Syrian refugee’s crisis. Environ Earth Sci., 79(19). DOI: 10.1007/s12665-019-8768-0
Yousefi. A., Nasiri. B., Karampour. M., & Malekian, A. (2018). Investigating climate change on changes in groundwater level in dry areas. case study: Bagh Desert. Q. J. Phys. Geogr.,11(42): 97-112. DOI: 20.1001.1.20085656.1397.11.42.7.5 [In Persian].
Yue. S., Pilon. P., & Cavadias. G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. J. Hydraul., 259(1-4), 254-271. DOI: 10.1016/S0022-1694(01)00594-7.
Zare, M. (2008). Investigating the possibility of artificial recharge using a conceptual and mathematical model in Mahidasht plain aquifer. Master Thesis, University of Razi, Kermanshah, Iran. 145 pp. [In Persian].